

Miscellaneous Exercise Question Bank

Single correct option Type

 $\begin{array}{ll} \textbf{1.(D)} & \text{Catenation means chain linking tendency of atoms of the same element.} \\ & \text{Catenation tendency is maximum in C due to strong } C-C & \text{bond strength.} \\ \end{array}$

2.(D)
$$Si \xrightarrow{HNO_3/HF} SiF_4 \xrightarrow{HF} H_2SiF_6$$

$$\downarrow^{H_2O}$$

$$H_2SiF_6 + H_4SiO_4$$
(B) (C)

3.(C) Aluminium vessel should not be washed with materials containing washing soda because it reacts with aluminium to form soluble aluminate.

$$\mathsf{Al} + \mathsf{Na}_2\mathsf{CO}_3 + \mathsf{H}_2\mathsf{O}(\mathsf{aq}) \longrightarrow \mathsf{Na}\mathsf{AlO}_2 + \mathsf{Na}\mathsf{HCO}_3 + \mathsf{H}_2$$

4.(D)
$$B_2H_6 + NH_3 \longrightarrow 2[BH_3 \leftarrow NH_3] \xrightarrow{\Delta} B_3N_3H_6 + H_2$$

5.(C) NH₄OH is used as a precipitating reagent for Al^{3+} ion as $Al(OH)_3$ rather than aqueous NaOH because $Al(OH)_3$ being amphoteric dissolve in NaOH to form soluble aluminate

$$Al(OH)_3 + NaOH \longrightarrow NaAlO_2$$

6.(C)
$$H_3BO_3 + NaOH(aq) \xrightarrow{\Delta} Na[B(OH)_4]$$
 $H_3BO_3 + molten NaOH \xrightarrow{\Delta} Na_3BO_3 + H_2O$

7.(C) BF₃ + H₂O
$$\longrightarrow$$
 H₃BO₃ + HBF₄

8.(D)
$$\operatorname{BCl}_3 + \operatorname{C}_5 \operatorname{H}_5 \operatorname{N} \longrightarrow \operatorname{BCl}_3 \left(\operatorname{C}_5 \operatorname{H}_5 \operatorname{N} \right)$$

9.(D) These reactions lead to chemical inertness due to formation of inert oxide layer on its surface.

10.(D)
$$H_3BO_3$$
 is monobasic acid.
$$H_3BO_3 + H_2O \longrightarrow B(OH)_4^- + H^+$$

11.(C) III is incorrect. Potash alum is $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$

12.(A)
$$T\ell I_3$$
 exist as $T\ell^+$ and I_3^-

13.(D)
$$\text{Na}_2\text{B}_4\text{O}_7 + 2\text{NH}_4\text{Cl} \xrightarrow{\text{Red hot}} \text{BN} + \text{NaCl} + \text{H}_2\text{O} + \text{HCl}$$

14.(A)
$$H_3BO_3 + C_2H_5OH \longrightarrow B(OEt)_3$$
 green flame

15.(D) Li⁺ does not form alums.

$$\textbf{16.(D)} \qquad B > A\ell < Ga > In < T\ell$$

Here IE of Ga is more than that of $A\ell$ due to high zeff and poor shielding effect of d-electrons. It of $T\ell > In$ due to poor shielding effect of f electrons and high zeff.

- **17.(D)** Tl^{3+} is good oxidising agent because its stable oxidation state is + 1 due to inert pair effect.
- **18.(B)** Al + N₂ \longrightarrow AlN $\xrightarrow{\text{H}_2\text{O}}$ Al(OH)₃ + NH₃ \(\tau_2 \)

Y is insoluble in water.

- **19.(D)** All are correct
- **20.(A)** Si forms covalent compounds due to its high ionization energy.
- **21.(A)** Silicons are not combustible
- **22.(B)** $CH_2(COOH)_2 + P_4O_{10} \longrightarrow C_3O_2 + H_2O_{10}$
- **23.(B)** Silyl Isocyanate is linear due to presence of back bonding.
- **24.(C)** Water in presence of oxygen reacts with Pb pipes to from soluble $Pb(OH)_2$ which gives poisnous Pb^{2+} ions in solution.
- **25.(B)** $C + H_2O \longrightarrow CO + H_2$ water gas
- **26.(A)** Bond length of B-F in $Me_3N \longrightarrow BF_3$ is greater than that in BF_3 due to back bonding in BF_3 .
- **27.(D)** Al + KOH \longrightarrow K₂AlO₂ + H₂ (soluble)

More than One Correct Type

- **28.(BCD)** Graphite is paramagnetic due to presence of unpaired electron.
- **29.(BCD)** $B_2O_3 + C \longrightarrow CO + B_4C$
- **30.(ABC)** $\operatorname{SiO}_2 + \operatorname{C} \longrightarrow \operatorname{Si} + \operatorname{CO}$
- **31.(ABC)** Al can form covalent compound also like $AlCl_3$, Al_2O_3
- **32.(AB)** PbO and PbO $_2$ are amphoteric as they reacts with acid as well as base.
- **33.(ABC)** Diborane undergoes unsymmetrical cleavage with lewis base like NH_3 , RNH_2 and Me_2NH due to small size of Base
- **34.(BD)** B_2H_6 is also lewis acid due to 3c-2e bond. It is used as reducing agent for reduction of organic compounds.
- **35.(BCD)** Borax bead test is given by transition metal salts.
- $\label{eq:acceleration} \begin{array}{ll} \textbf{36.(AB)} & \text{HCOOH} \xrightarrow{\text{conc.}} H_2\text{SO}_4 \to H_2\text{O} + \text{CO} \\ \\ & \text{Malonic acid} \xrightarrow{P_4\text{O}_{10}} \text{C}_3\text{O}_2 \\ \\ & \text{Mg}_2\text{C}_3 \xrightarrow{H_2\text{O}} \text{Mg}(\text{OH})_2 + \text{C}_3\text{H}_4 \\ \\ & \text{K}_4[\text{Fe}(\text{CN})_6] + \text{H}_2\text{SO}_4 \xrightarrow{} \text{K}_2\text{SO}_4 + \text{FeSO}_4 + \text{CO} + (\text{NH}_4)_2\text{SO}_4 \end{array}$

37.(B) Bond angle in graphite is 120°.

38.(ABCD) B_2H_6 is not polar. It undergoes symmetrical cleavage with large Nucleophiles due to stearic strain.

39.(C) Hydrolysis of R₃SiCl will form dimer hydrolysis of SiCl₄ will for Si(OH)₄

40.(ABCD) Refer module

41.(A) C_4H_4 cannot be prepared by hydrolysis. CH_4 , C_2H_2 and C_3H_4 are prepared by hydrolysis of Al_4C_3 , CaC_2 and Mg_2C_3 respectively.

42.(ABD) $NO^{+}BF_{4}^{-}$

It has 5σ and 2π bond

Nitrogen-oxygen bond length in NO⁺ is higher than that in Nitric oxide.

Comprehension Type

43 to 48

$$\begin{array}{l} \text{NaBH}_4 + \text{I}_2 & \longrightarrow \text{B}_2\text{H}_6 + \text{H}_2 + \text{NaI} \\ \text{(B)} & \text{(B)} & \text{(B)} \\ \end{array}$$

$$\begin{array}{l} \text{B}_2\text{H}_6 & \longrightarrow \text{H}_3\text{BO}_3 + \text{H}_2 \\ \text{(C)} & \text{H}_3\text{BO}_3 & \longrightarrow \text{B}(\text{OH})_4^- + \text{H}^+ \\ \text{(C)} & \text{B}_2\text{H}_6 & \longrightarrow \text{A} & \text{B}_2\text{O}_3 \end{array}$$

43.(C)

44.(ACD) Cis-1, 2-diol is used in titration of NaOH with H_3BO_3 . Cis-1, 2-diol forms stable complex with H_3BO_3 .

45.(B) $B_2H_6 \xrightarrow{NH_3} [B(NH_3)_2H_2]^+[BH_4]^-$

46.(A) $Al_2Cl_6 \xrightarrow{H_2O} [Al(H_2O)_6]^{3+}3Cl^{-}$

47.(C) Al X_3 forms dimer to overcome electron deficiency.

48.(C) AlCl₃ can be sublimed easily. It is lewis acid and covalent compound.

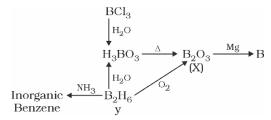
49 to 53

A is $Na_2B_4O_7 \cdot 10H_2O$

aq. Solution of A is alkaline due to formation of NaOH

$$Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\quad \Delta \quad} Na_2B_4O_7 \xrightarrow{\quad (B) \quad} B_2O_3 + NaBO_2 \xrightarrow{\quad NiO \quad} Ni(BO_2)_2$$

49.(A) Water of crystallisation present per mole Borax is 10.


50.(C) Aqueous solution of Borax is alkaline due to hydrolysis of anion i.e. $B_4O_7^{2-}$

51.(A) $\operatorname{Na_2B_4O_7} \xrightarrow{\operatorname{Ca}^{2+}} \operatorname{CaB_4O_7}$

52.(A) Na₂B₄O₇ **53.(B)** C is B₂O₃ and D is Ni(BO₂)₂

54-55. 54.(C) 55.(C)

56 to 58

56.(D) R_2SiCl_2 on hydrolysis gives linear polymer and R_3SiCl act as chain terminating unit.

57.(D)

58.(B)
$$R_3Si - O - Si - O - Si - O - Si - O - Si - R$$

59-61. 59.(A) 60.(B) 61.(D)

$$\begin{array}{c} \operatorname{Borax} \xrightarrow{\operatorname{H}_2 \operatorname{SO}_2} \operatorname{H}_2 \operatorname{B}_4 \operatorname{O}_7 \xrightarrow{\Delta} \operatorname{B}_2 \operatorname{O}_3 \xrightarrow{\operatorname{Mg}} \operatorname{B} \xrightarrow{\operatorname{Cl}_2} \operatorname{BCl}_3 \\ \text{(P)} & \text{(Q)} & \text{(R)} & \xrightarrow{\Delta} \operatorname{BCl}_3 \\ & \text{(S)} & \text{LiAlH}_4 \\ \\ \operatorname{B}_3 \operatorname{N}_3 \operatorname{H}_6 \xrightarrow{200^{\circ} \operatorname{C}} \left[\operatorname{BH}_2 (\operatorname{NH}_3)_2 \right]^{\dagger} \left[\operatorname{BH}_4 \right]^{-} \xrightarrow{\operatorname{NH}_3} \operatorname{B}_2 \operatorname{H}_6 \\ \text{(X)} & \text{(X)} \end{array}$$

62.(C)
$$B_2H_6 \xrightarrow{NH_3} (B_3N_3H_6)$$
Borazine

63.(A) CO undergoes symmetrical cleavage with $\rm B_2H_6$ $\rm B_2H_6 \xrightarrow{\rm 2CO} \rm 2[BH_3 \cdot CO]$

64.(C)
$$B_2H_6 + HCl \longrightarrow B_2H_5Cl + H_2$$

Assertion & Reason Type

65.(A) Al shows passivity with conc. HNO_3 due to formation of inert layer of Al_2O_3 .

66.(A) Al + HCl
$$\longrightarrow$$
 AlCl $_3$ + H $_2$ Al + NaOH \longrightarrow NaAlO $_2$ + H $_2$ Amphoteric substance react with acid as well as base.

67.(A) Alums like $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$ are acidic due to cationic hydrolysis.

68.(A) Boron has highest melting point due to Icosahedral structure.

69.(A) Stable O.S of Tl is +1 due to inert pair effect.

70.(C) BF $_3$ undergoes partial hydrolysis due to formation of HBF $_4$. BF $_3$ + H $_2$ O \longrightarrow H $_3$ BO $_3$ + HBF $_4$

71.(A) Diborane has two types of hydrogen i.e. Bridging hydrogen and terminal hydrogen.

Bridge bond is stronger than terminal bond.

- **72.(A)** Borazole i.e $B_3N_3H_6$ is isostructural to Benzene
- **73.(B)** Borazole is known as inorganic benzene. When diborane is heated with NH_3 at 200°C, Borazole is formed. Here NH_3 act as Lewis base and diborane as Lewis acid.
- **74.(A)** Refer 219
- **75.(A)** Lewis acid character in boron trihalide is $BF_3 < BCl_3 < BBr_3 < BI_3$ because electron deficiency in BF_3 is overcome by back bonding. As we move down the group, extent of back bonding decreases due to poor overlap.
- **76.(A)** $BCl_3 + H_2O \longrightarrow H_3BO_3 + HCl$
- **77.(D)** Boric acid is Monobasic acid
- **78.(A)** O = C = C = C = O
- **79.(C)** CCl $_4$ does not react with water due to absence of Vacant d orbital. Both SiCl $_4$ and CCl $_4$ are covalent.
- **80.(B)** SiO $_2$ is solid (3D silicate)
- **82.(D)** Carbonates are sp² and silicates are sp³ hybridised.
- **83.(B)** Bond dissociation energy of B-F bond in BF_3 molecule is more than C-F bond in CF_4 due to back bonding in BF_3 .
- **84.(A)** Diamond is extremely hard to strong C-C bond in the structure.
- **85.(A)** In $Si_4O_{12}^{x-}$, x is 8. Here number of shared oxygen is 2.

Matrix Matching Type

86.(D) Al₂O₃ : Amphoteric i.e. can react with acid as well as base

AlCl₃ : exist as dimer
B : Non metal

 B_2O_3 : Non-metallic oxide so acidic

87.(D) BN (Boron Nitride) : Inorganic graphite

 $\mathrm{B_{3}N_{3}H_{6}}$ (Borazole) : Inorganic Benzene

Ruby : Contain Al_2O_3

Black lead : Graphite

88.(A) Water gas : $CO + H_2$

Producer gas : $CO + N_2$

Coal gas : Mixture of CO, H₂, CH₄ and CO₂

Natural gas : CH₄

89. [A-p, r] [B-p, r] [C-q, r] [D-q, s]

 B_2H_6 : Dimer of BH_3 and each B is sp^3 hybridised Al_2Cl_6 : Dimer of $AlCl_3$ and each Al is sp^3 hybridised

 $BeCl_2(Solid)$: sp^2 hybridised

 $(SiH_3)_3N$: Planer (sp^2) due to Back bonding

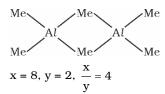
90. [A-p, q] [B-p, r] [C-q, r, s] [D-q]

$$Al_2(C_2)_3 + H_2O \longrightarrow Al(OH)_3 + C_2H_2$$

$$CH_2(COOH)_2 + P_4O_{10} \longrightarrow C_3O_2 + H_3PO_4$$

 $CH_3SiCl_3 + H_2O \longrightarrow CH_3Si(OH)_3 \longrightarrow Cross linked polymer$

$${\rm SnCl_2 \cdot 2H_2O} \xrightarrow[{\rm Standary}]{\rm on} {\rm SnO_2}$$


Integer Answer Type

91.(2) In Borax, 2 Boron are sp² hybridised and 2 Boron are sp³ hybridised.

92.(5) B₂H₆, BCl₃, CO₂, Al₂Cl₆, SiCl₄

93.(4) $Al_2(Me)_6$, all atoms are sp^3 hybridized

No. of 3c-2e bonds = 2

94.(3)
$$(CH_3)_3N$$
, CO , $(CH_3)_2O$

95.(3) i, iv, vi

96.(7) PbO, PbO₂, SnO, SnO₂, Al₂O₃, BeO, Ga₂O₃

97.(4) Refer structure of borax in solution 252.

98.(2) SiO₂, B₂O₃

99.(4) Al_4C_3 , Mg_2C_3 , B_2H_6 , BaC_2

$$Al_4C_3 \xrightarrow{H_2O} Al(OH)_3 + CH_{4(g)}$$

$$Mg_2C_3 \xrightarrow{H_2O} Mg(OH)_2 + C_3H_2(g)$$

$$B_2H_6 \xrightarrow{H_2O} H_3BO_3 + H_2(g)$$

$$BaC_2 \xrightarrow{H_2O} Ba(OH)_2 + C_2H_2(g)$$

100.(7) SiF₄ $\xrightarrow{\text{H}_2\text{O}}$ Si(OH)₄+ H₂SiF₆; SiCl₄ $\xrightarrow{\text{H}_2\text{O}}$ Si(OH)₄+ HCl_x

Covalency of Si in y is $6 = C_1$

Covalency of Cl in z is $1 = C_2$